RDFS
Theory corresponding to RDF-Schema (RDFS)
OWLClass
dataclass
Bases: FactMixin
True if node is an OWL Class
Note that even though OWL predicates are typically defined in owlfull.py, owl:Class is considered part of RDFS.
Source code in src/typedlogic/integrations/frameworks/rdflib/rdfs.py
18 19 20 21 22 23 24 25 26 27 | |
RDFProperty
dataclass
Bases: FactMixin
RDF.Property axiom
Source code in src/typedlogic/integrations/frameworks/rdflib/rdfs.py
30 31 32 33 34 35 36 | |
SubClassOf
dataclass
Bases: FactMixin
SubClassOf axiom
Source code in src/typedlogic/integrations/frameworks/rdflib/rdfs.py
39 40 41 42 43 44 45 46 | |
SubPropertyOf
dataclass
Bases: FactMixin
SubPropertyOf axiom
Source code in src/typedlogic/integrations/frameworks/rdflib/rdfs.py
49 50 51 52 53 54 55 56 | |
Type
dataclass
Bases: FactMixin
rdf.Type axiom
Source code in src/typedlogic/integrations/frameworks/rdflib/rdfs.py
59 60 61 62 63 64 65 66 | |
Domain
dataclass
Bases: FactMixin
property domain axiom
Source code in src/typedlogic/integrations/frameworks/rdflib/rdfs.py
69 70 71 72 73 74 75 76 | |
Range
dataclass
Bases: FactMixin
property range axiom
Source code in src/typedlogic/integrations/frameworks/rdflib/rdfs.py
79 80 81 82 83 84 85 86 | |
transitivity_and_reflexivity(s, z, o)
Axioms for transitivity and reflexivity.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
s
|
Node
|
subject |
required |
z
|
Node
|
intermediate |
required |
o
|
Node
|
object |
required |
Returns:
| Type | Description |
|---|---|
|
|
Source code in src/typedlogic/integrations/frameworks/rdflib/rdfs.py
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 | |
type_propagation(s, c, d)
Propagation of rdf:type up class hierarchy
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
s
|
Node
|
subject |
required |
c
|
Node
|
asserted class |
required |
d
|
Node
|
inferred class |
required |
Returns:
| Type | Description |
|---|---|
|
|
Source code in src/typedlogic/integrations/frameworks/rdflib/rdfs.py
109 110 111 112 113 114 115 116 117 118 119 120 | |