Bases: ABC
A solver an engine that can check a theory for consistency, satisfiability, or can infer new sentences.
This is an abstract class that defines the interface for a solver.
You can retrieve a specific solver with the get_solver
function:
>>> from typedlogic.registry import get_solver
>>> solver = get_solver("clingo")
Note that all solvers are provided via integrations, and may not be installed by default.
Some may require additional command line setup.
Once you have a solver, you can add theories, or individual sentences to it:
>>> from typedlogic.integrations.frameworks.pydantic import FactBaseModel
>>> class AncestorOf(FactBaseModel):
... ancestor: str
... descendant: str
>>> solver.add_predicate_definition(PredicateDefinition(predicate="AncestorOf", arguments={'ancestor': str, 'descendant': str}))
>>> from typedlogic import Term, Variable
>>> x = Variable("x")
>>> y = Variable("y")
>>> z = Variable("z")
>>> solver.add( (Term("AncestorOf", x, z) & Term("AncestorOf", z, y)) >> Term("AncestorOf", x, y))
And facts:
>>> solver.add_fact(AncestorOf(ancestor='p1', descendant='p1a'))
>>> solver.add_fact(AncestorOf(ancestor='p1a', descendant='p1aa'))
>>> aa = SentenceGroup(name="transitivity-of-ancestor-of")
>>> solver.add_sentence_group(aa)
The check
method ensures the theory and ground terms (data) are consistent:
>>> soln = solver.check()
>>> soln.satisfiable
True
You can then query for models:
>>> model = solver.model()
>>> for t in model.ground_terms:
... print(t)
AncestorOf(p1, p1a)
AncestorOf(p1a, p1aa)
AncestorOf(p1, p1aa)
Source code in src/typedlogic/solver.py
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319 | @dataclass
class Solver(ABC):
"""
A solver an engine that can check a theory for consistency, satisfiability, or can infer new sentences.
This is an abstract class that defines the *interface* for a solver.
You can retrieve a specific solver with the `get_solver` function:
>>> from typedlogic.registry import get_solver
>>> solver = get_solver("clingo")
Note that all solvers are provided via *integrations*, and may not be installed by default.
Some may require additional command line setup.
Once you have a solver, you can add theories, or individual sentences to it:
>>> from typedlogic.integrations.frameworks.pydantic import FactBaseModel
>>> class AncestorOf(FactBaseModel):
... ancestor: str
... descendant: str
>>> solver.add_predicate_definition(PredicateDefinition(predicate="AncestorOf", arguments={'ancestor': str, 'descendant': str}))
>>> from typedlogic import Term, Variable
>>> x = Variable("x")
>>> y = Variable("y")
>>> z = Variable("z")
>>> solver.add( (Term("AncestorOf", x, z) & Term("AncestorOf", z, y)) >> Term("AncestorOf", x, y))
And facts:
>>> solver.add_fact(AncestorOf(ancestor='p1', descendant='p1a'))
>>> solver.add_fact(AncestorOf(ancestor='p1a', descendant='p1aa'))
>>> aa = SentenceGroup(name="transitivity-of-ancestor-of")
>>> solver.add_sentence_group(aa)
The `check` method ensures the theory and ground terms (data) are consistent:
>>> soln = solver.check()
>>> soln.satisfiable
True
You can then query for models:
>>> model = solver.model()
>>> for t in model.ground_terms:
... print(t)
AncestorOf(p1, p1a)
AncestorOf(p1a, p1aa)
AncestorOf(p1, p1aa)
"""
strict: bool = False
method_name: Optional[str] = None
methods_supported: ClassVar[Optional[List[Method]]] = None
profile: ClassVar[Profile] = UnspecifiedProfile()
assume_closed_world: bool = False
# TODO: move towards this
base_theory: Theory = field(default_factory=Theory)
predicate_definitions: Optional[Dict[str, PredicateDefinition]] = None
type_definitions: Dict[str, str] = field(default_factory=dict)
constants: Dict[str, Any] = field(default_factory=dict)
goals: Optional[List[SentenceGroup]] = None
@property
def method(self) -> Method:
if self.methods_supported is None:
raise NotImplementedError("Solver must define methods_supported")
for m in self.methods_supported:
if self.method_name is None and m.is_default:
return m
if m.name == self.method_name:
return m
raise ValueError(f"Method {self.method_name} not supported")
@abstractmethod
def check(self) -> Solution:
pass
def model(self) -> Model:
return next(self.models())
@abstractmethod
def models(self) -> Iterator[Model]:
pass
def prove_goals(self, strict=True) -> Iterable[Tuple[Sentence, Optional[bool]]]:
if not self.check().satisfiable:
raise ValueError("Cannot prove goals for unsatisfiable theory")
if not self.goals:
raise ValueError("No goals to prove")
for goal_group in self.goals:
if not goal_group.sentences:
raise ValueError(f"Goal group {goal_group.name} has no sentences")
for sentence in goal_group.sentences:
provable = self.prove(sentence)
if not provable and strict:
raise ValueError(f"Goal {sentence} not provable")
yield sentence, provable
def prove_multiple(self, sentences: List[Sentence]) -> Iterable[Tuple[Sentence, Optional[bool]]]:
if self.check().satisfiable is False:
raise ValueError("Cannot prove goals for unsatisfiable theory")
if not sentences:
raise ValueError("No goals to prove")
for sentence in sentences:
provable = self.prove(sentence)
yield sentence, provable
def prove(self, sentence: Sentence) -> Optional[bool]:
"""
Prove a sentence.
:param sentence:
:return:
"""
if isinstance(sentence, Term):
# Note: the default implementation may be highly ineffecient.
# it is recommended to override this method in a subclass.
has_vars = sentence.variables
cls = type(self)
new_solver = cls()
new_solver.add(self.base_theory)
model = self.model()
for t in model.iter_retrieve(sentence.predicate):
if t == sentence:
return True
if has_vars:
if t.predicate == sentence.predicate:
is_match = True
for i in range(len(sentence.values)):
arg_val = sentence.values[i]
if isinstance(arg_val, Variable):
# auto-match (assume existential over whole domain)
continue
if arg_val != t.values[i]:
is_match = False
break
if is_match:
return True
return False
if isinstance(sentence, Exists):
inner = sentence.sentence
if isinstance(inner, Term):
return self.prove(inner)
return None
def load(self, source: Union[str, Path, TextIO, ModuleType]) -> None:
"""
Load a theory from a file.
:param source:
:return:
"""
parser = PythonParser()
if isinstance(source, ModuleType):
theory = parser.transform(source)
else:
theory = parser.parse(source)
self.add(theory)
def add(self, element: Union[ELEMENT, Iterable[ELEMENT]]) -> None:
if isinstance(element, (list, abc.Iterator)):
for e in element:
self.add(e)
return
if isinstance(element, FactMixin):
self.add_fact(element)
elif isinstance(element, SentenceGroup):
self.add_sentence_group(element)
elif isinstance(element, Theory):
self.add_theory(element)
elif isinstance(element, PredicateDefinition):
self.add_predicate_definition(element)
elif isinstance(element, TermBag):
for t in element.as_terms():
self.add(t)
elif isinstance(element, Sentence):
self.add_sentence(element)
else:
raise ValueError(f"Unsupported axiom type: {type(element)}")
def add_fact(self, fact: FactMixin):
self.base_theory.ground_terms.append(fact_to_term(fact))
def add_sentence_group(self, sentence_group: SentenceGroup) -> None:
self.base_theory.sentence_groups.append(sentence_group)
if sentence_group.group_type == SentenceGroupType.GOAL:
if not self.goals:
self.goals = []
self.goals.append(sentence_group)
if sentence_group.sentences:
for sentence in sentence_group.sentences:
self.add_sentence(sentence)
def add_sentence(self, sentence: Sentence) -> None:
if sentence not in self.base_theory.sentences:
self.base_theory.sentence_groups.append(SentenceGroup(name="dynamic", sentences=[sentence]))
def add_predicate_definition(self, predicate_definition: PredicateDefinition) -> None:
"""
Add a predicate definition to the solver.
Some solvers do not need predicate definitions (for example, classic prolog systems, as well
as pure FOL solvers). However, many solvers need some kind of typing information.
:param predicate_definition:
:return:
"""
self.base_theory.predicate_definitions.append(predicate_definition)
def add_theory(self, theory: Theory) -> None:
if theory.constants:
for k, v in theory.constants.items():
self.constants[k] = v
self.base_theory.constants[k] = v
if theory.type_definitions:
for k, v in theory.type_definitions.items():
self.type_definitions[k] = v
self.base_theory.type_definitions[k] = v
if theory.predicate_definitions:
for p in theory.predicate_definitions:
self.add_predicate_definition(p)
if theory.sentence_groups:
for aa in theory.sentence_groups:
self.add_sentence_group(aa)
if theory.ground_terms:
for t in theory.ground_terms:
self.add(t)
def dump(self) -> str:
"""
Dump the internal state of the solver as a string.
:return:
"""
raise NotImplementedError
|
prove(sentence)
Prove a sentence.
Parameters:
Name |
Type |
Description |
Default |
sentence
|
Sentence
|
|
required
|
Returns:
Type |
Description |
Optional[bool]
|
|
Source code in src/typedlogic/solver.py
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228 | def prove(self, sentence: Sentence) -> Optional[bool]:
"""
Prove a sentence.
:param sentence:
:return:
"""
if isinstance(sentence, Term):
# Note: the default implementation may be highly ineffecient.
# it is recommended to override this method in a subclass.
has_vars = sentence.variables
cls = type(self)
new_solver = cls()
new_solver.add(self.base_theory)
model = self.model()
for t in model.iter_retrieve(sentence.predicate):
if t == sentence:
return True
if has_vars:
if t.predicate == sentence.predicate:
is_match = True
for i in range(len(sentence.values)):
arg_val = sentence.values[i]
if isinstance(arg_val, Variable):
# auto-match (assume existential over whole domain)
continue
if arg_val != t.values[i]:
is_match = False
break
if is_match:
return True
return False
if isinstance(sentence, Exists):
inner = sentence.sentence
if isinstance(inner, Term):
return self.prove(inner)
return None
|
load(source)
Load a theory from a file.
Parameters:
Name |
Type |
Description |
Default |
source
|
Union[str, Path, TextIO, ModuleType]
|
|
required
|
Returns:
Source code in src/typedlogic/solver.py
230
231
232
233
234
235
236
237
238
239
240
241
242 | def load(self, source: Union[str, Path, TextIO, ModuleType]) -> None:
"""
Load a theory from a file.
:param source:
:return:
"""
parser = PythonParser()
if isinstance(source, ModuleType):
theory = parser.transform(source)
else:
theory = parser.parse(source)
self.add(theory)
|
add_predicate_definition(predicate_definition)
Add a predicate definition to the solver.
Some solvers do not need predicate definitions (for example, classic prolog systems, as well
as pure FOL solvers). However, many solvers need some kind of typing information.
Parameters:
Returns:
Source code in src/typedlogic/solver.py
282
283
284
285
286
287
288
289
290
291
292 | def add_predicate_definition(self, predicate_definition: PredicateDefinition) -> None:
"""
Add a predicate definition to the solver.
Some solvers do not need predicate definitions (for example, classic prolog systems, as well
as pure FOL solvers). However, many solvers need some kind of typing information.
:param predicate_definition:
:return:
"""
self.base_theory.predicate_definitions.append(predicate_definition)
|
dump()
Dump the internal state of the solver as a string.
Returns:
Source code in src/typedlogic/solver.py
313
314
315
316
317
318
319 | def dump(self) -> str:
"""
Dump the internal state of the solver as a string.
:return:
"""
raise NotImplementedError
|