Skip to content

Solver

Model dataclass

A model is a set of ground terms that satisfy a set of axioms.

Source code in src/typedlogic/solver.py
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
@dataclass
class Model:
    """
    A model is a set of ground terms that satisfy a set of axioms.
    """

    description: Optional[str] = None
    source_object: Optional[Any] = None
    ground_terms: List[Term] = field(default_factory=list)

    def retrieve(self, predicate: Union[str, type], *args) -> List[Term]:
        return list(self.iter_retrieve(predicate, *args))

    def iter_retrieve(self, predicate: Union[str, type], *args) -> Iterator[Term]:
        """
        Retrieve all ground terms with a given predicate.

        :param predicate:
        :return:
        """
        if isinstance(predicate, type):
            predicate = predicate.__name__
        for t in self.ground_terms:
            if t.predicate != predicate:
                continue
            if args:
                is_match = True
                for i in range(len(args)):
                    if args[i] is None:
                        continue
                    if args[i] != t.values[i]:
                        is_match = False
                        break
                if not is_match:
                    continue
            yield t

iter_retrieve(predicate, *args)

Retrieve all ground terms with a given predicate.

Parameters:

Name Type Description Default
predicate Union[str, type]
required

Returns:

Type Description
Iterator[Term]
Source code in src/typedlogic/solver.py
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
def iter_retrieve(self, predicate: Union[str, type], *args) -> Iterator[Term]:
    """
    Retrieve all ground terms with a given predicate.

    :param predicate:
    :return:
    """
    if isinstance(predicate, type):
        predicate = predicate.__name__
    for t in self.ground_terms:
        if t.predicate != predicate:
            continue
        if args:
            is_match = True
            for i in range(len(args)):
                if args[i] is None:
                    continue
                if args[i] != t.values[i]:
                    is_match = False
                    break
            if not is_match:
                continue
        yield t

Method dataclass

A method is a way to solve a set of axioms.

Source code in src/typedlogic/solver.py
69
70
71
72
73
74
75
76
77
78
@dataclass
class Method:
    """
    A method is a way to solve a set of axioms.
    """

    name: str
    description: Optional[str] = None
    is_default: bool = False
    impl_class: Optional[Type] = None

Solver dataclass

Bases: ABC

A solver an engine that can check a theory for consistency, satisfiability, or can infer new sentences.

This is an abstract class that defines the interface for a solver.

You can retrieve a specific solver with the get_solver function:

>>> from typedlogic.registry import get_solver
>>> solver = get_solver("clingo")

Note that all solvers are provided via integrations, and may not be installed by default. Some may require additional command line setup.

Once you have a solver, you can add theories, or individual sentences to it:

>>> from typedlogic.integrations.frameworks.pydantic import FactBaseModel
>>> class AncestorOf(FactBaseModel):
...     ancestor: str
...     descendant: str
>>> solver.add_predicate_definition(PredicateDefinition(predicate="AncestorOf", arguments={'ancestor': str, 'descendant': str}))
>>> from typedlogic import Term, Variable
>>> x = Variable("x")
>>> y = Variable("y")
>>> z = Variable("z")
>>> solver.add( (Term("AncestorOf", x, z) & Term("AncestorOf", z, y)) >> Term("AncestorOf", x, y))

And facts:

>>> solver.add_fact(AncestorOf(ancestor='p1', descendant='p1a'))
>>> solver.add_fact(AncestorOf(ancestor='p1a', descendant='p1aa'))
>>> aa = SentenceGroup(name="transitivity-of-ancestor-of")
>>> solver.add_sentence_group(aa)

The check method ensures the theory and ground terms (data) are consistent:

>>> soln = solver.check()
>>> soln.satisfiable
True

You can then query for models:

>>> model = solver.model()
>>> for t in model.ground_terms:
...     print(t)
AncestorOf(p1, p1a)
AncestorOf(p1a, p1aa)
AncestorOf(p1, p1aa)
Source code in src/typedlogic/solver.py
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
@dataclass
class Solver(ABC):
    """
    A solver an engine that can check a theory for consistency, satisfiability, or can infer new sentences.

    This is an abstract class that defines the *interface* for a solver.

    You can retrieve a specific solver with the `get_solver` function:

        >>> from typedlogic.registry import get_solver
        >>> solver = get_solver("clingo")

    Note that all solvers are provided via *integrations*, and may not be installed by default.
    Some may require additional command line setup.

    Once you have a solver, you can add theories, or individual sentences to it:

        >>> from typedlogic.integrations.frameworks.pydantic import FactBaseModel
        >>> class AncestorOf(FactBaseModel):
        ...     ancestor: str
        ...     descendant: str
        >>> solver.add_predicate_definition(PredicateDefinition(predicate="AncestorOf", arguments={'ancestor': str, 'descendant': str}))
        >>> from typedlogic import Term, Variable
        >>> x = Variable("x")
        >>> y = Variable("y")
        >>> z = Variable("z")
        >>> solver.add( (Term("AncestorOf", x, z) & Term("AncestorOf", z, y)) >> Term("AncestorOf", x, y))

    And facts:

        >>> solver.add_fact(AncestorOf(ancestor='p1', descendant='p1a'))
        >>> solver.add_fact(AncestorOf(ancestor='p1a', descendant='p1aa'))
        >>> aa = SentenceGroup(name="transitivity-of-ancestor-of")
        >>> solver.add_sentence_group(aa)

    The `check` method ensures the theory and ground terms (data) are consistent:

        >>> soln = solver.check()
        >>> soln.satisfiable
        True

    You can then query for models:

        >>> model = solver.model()
        >>> for t in model.ground_terms:
        ...     print(t)
        AncestorOf(p1, p1a)
        AncestorOf(p1a, p1aa)
        AncestorOf(p1, p1aa)

    """

    strict: bool = False
    method_name: Optional[str] = None
    methods_supported: ClassVar[Optional[List[Method]]] = None
    profile: ClassVar[Profile] = UnspecifiedProfile()
    assume_closed_world: bool = False

    # TODO: move towards this
    base_theory: Theory = field(default_factory=Theory)

    predicate_definitions: Optional[Dict[str, PredicateDefinition]] = None
    type_definitions: Dict[str, str] = field(default_factory=dict)
    constants: Dict[str, Any] = field(default_factory=dict)
    goals: Optional[List[SentenceGroup]] = None

    @property
    def method(self) -> Method:
        if self.methods_supported is None:
            raise NotImplementedError("Solver must define methods_supported")
        for m in self.methods_supported:
            if self.method_name is None and m.is_default:
                return m
            if m.name == self.method_name:
                return m
        raise ValueError(f"Method {self.method_name} not supported")

    @abstractmethod
    def check(self) -> Solution:
        pass

    def model(self) -> Model:
        return next(self.models())

    @abstractmethod
    def models(self) -> Iterator[Model]:
        pass

    def prove_goals(self, strict=True) -> Iterable[Tuple[Sentence, Optional[bool]]]:
        if not self.check().satisfiable:
            raise ValueError("Cannot prove goals for unsatisfiable theory")
        if not self.goals:
            raise ValueError("No goals to prove")
        for goal_group in self.goals:
            if not goal_group.sentences:
                raise ValueError(f"Goal group {goal_group.name} has no sentences")
            for sentence in goal_group.sentences:
                provable = self.prove(sentence)
                if not provable and strict:
                    raise ValueError(f"Goal {sentence} not provable")
                yield sentence, provable

    def prove_multiple(self, sentences: List[Sentence]) -> Iterable[Tuple[Sentence, Optional[bool]]]:
        if self.check().satisfiable is False:
            raise ValueError("Cannot prove goals for unsatisfiable theory")
        if not sentences:
            raise ValueError("No goals to prove")
        for sentence in sentences:
            provable = self.prove(sentence)
            yield sentence, provable

    def prove(self, sentence: Sentence) -> Optional[bool]:
        """
        Prove a sentence.

        :param sentence:
        :return:
        """
        if isinstance(sentence, Term):
            # Note: the default implementation may be highly ineffecient.
            # it is recommended to override this method in a subclass.
            has_vars = sentence.variables
            cls = type(self)
            new_solver = cls()
            new_solver.add(self.base_theory)
            model = self.model()
            for t in model.iter_retrieve(sentence.predicate):
                if t == sentence:
                    return True
                if has_vars:
                    if t.predicate == sentence.predicate:
                        is_match = True
                        for i in range(len(sentence.values)):
                            arg_val = sentence.values[i]
                            if isinstance(arg_val, Variable):
                                # auto-match (assume existential over whole domain)
                                continue
                            if arg_val != t.values[i]:
                                is_match = False
                                break
                        if is_match:
                            return True
            return False
        if isinstance(sentence, Exists):
            inner = sentence.sentence
            if isinstance(inner, Term):
                return self.prove(inner)
        return None

    def load(self, source: Union[str, Path, TextIO, ModuleType]) -> None:
        """
        Load a theory from a file.

        :param source:
        :return:
        """
        parser = PythonParser()
        if isinstance(source, ModuleType):
            theory = parser.transform(source)
        else:
            theory = parser.parse(source)
        self.add(theory)

    def add(self, element: Union[ELEMENT, Iterable[ELEMENT]]) -> None:
        if isinstance(element, (list, abc.Iterator)):
            for e in element:
                self.add(e)
            return
        if isinstance(element, FactMixin):
            self.add_fact(element)
        elif isinstance(element, SentenceGroup):
            self.add_sentence_group(element)
        elif isinstance(element, Theory):
            self.add_theory(element)
        elif isinstance(element, PredicateDefinition):
            self.add_predicate_definition(element)
        elif isinstance(element, TermBag):
            for t in element.as_terms():
                self.add(t)
        elif isinstance(element, Sentence):
            self.add_sentence(element)
        else:
            raise ValueError(f"Unsupported axiom type: {type(element)}")

    def add_fact(self, fact: FactMixin):
        self.base_theory.ground_terms.append(fact_to_term(fact))

    def add_sentence_group(self, sentence_group: SentenceGroup) -> None:
        self.base_theory.sentence_groups.append(sentence_group)
        if sentence_group.group_type == SentenceGroupType.GOAL:
            if not self.goals:
                self.goals = []
            self.goals.append(sentence_group)
        if sentence_group.sentences:
            for sentence in sentence_group.sentences:
                self.add_sentence(sentence)

    def add_sentence(self, sentence: Sentence) -> None:
        if sentence not in self.base_theory.sentences:
            self.base_theory.sentence_groups.append(SentenceGroup(name="dynamic", sentences=[sentence]))

    def add_predicate_definition(self, predicate_definition: PredicateDefinition) -> None:
        """
        Add a predicate definition to the solver.

        Some solvers do not need predicate definitions (for example, classic prolog systems, as well
        as pure FOL solvers). However, many solvers need some kind of typing information.

        :param predicate_definition:
        :return:
        """
        self.base_theory.predicate_definitions.append(predicate_definition)

    def add_theory(self, theory: Theory) -> None:
        if theory.constants:
            for k, v in theory.constants.items():
                self.constants[k] = v
                self.base_theory.constants[k] = v
        if theory.type_definitions:
            for k, v in theory.type_definitions.items():
                self.type_definitions[k] = v
                self.base_theory.type_definitions[k] = v
        if theory.predicate_definitions:
            for p in theory.predicate_definitions:
                self.add_predicate_definition(p)
        if theory.sentence_groups:
            for aa in theory.sentence_groups:
                self.add_sentence_group(aa)
        if theory.ground_terms:
            for t in theory.ground_terms:
                self.add(t)

    def dump(self) -> str:
        """
        Dump the internal state of the solver as a string.

        :return:
        """
        raise NotImplementedError

prove(sentence)

Prove a sentence.

Parameters:

Name Type Description Default
sentence Sentence
required

Returns:

Type Description
Optional[bool]
Source code in src/typedlogic/solver.py
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
def prove(self, sentence: Sentence) -> Optional[bool]:
    """
    Prove a sentence.

    :param sentence:
    :return:
    """
    if isinstance(sentence, Term):
        # Note: the default implementation may be highly ineffecient.
        # it is recommended to override this method in a subclass.
        has_vars = sentence.variables
        cls = type(self)
        new_solver = cls()
        new_solver.add(self.base_theory)
        model = self.model()
        for t in model.iter_retrieve(sentence.predicate):
            if t == sentence:
                return True
            if has_vars:
                if t.predicate == sentence.predicate:
                    is_match = True
                    for i in range(len(sentence.values)):
                        arg_val = sentence.values[i]
                        if isinstance(arg_val, Variable):
                            # auto-match (assume existential over whole domain)
                            continue
                        if arg_val != t.values[i]:
                            is_match = False
                            break
                    if is_match:
                        return True
        return False
    if isinstance(sentence, Exists):
        inner = sentence.sentence
        if isinstance(inner, Term):
            return self.prove(inner)
    return None

load(source)

Load a theory from a file.

Parameters:

Name Type Description Default
source Union[str, Path, TextIO, ModuleType]
required

Returns:

Type Description
None
Source code in src/typedlogic/solver.py
230
231
232
233
234
235
236
237
238
239
240
241
242
def load(self, source: Union[str, Path, TextIO, ModuleType]) -> None:
    """
    Load a theory from a file.

    :param source:
    :return:
    """
    parser = PythonParser()
    if isinstance(source, ModuleType):
        theory = parser.transform(source)
    else:
        theory = parser.parse(source)
    self.add(theory)

add_predicate_definition(predicate_definition)

Add a predicate definition to the solver.

Some solvers do not need predicate definitions (for example, classic prolog systems, as well as pure FOL solvers). However, many solvers need some kind of typing information.

Parameters:

Name Type Description Default
predicate_definition PredicateDefinition
required

Returns:

Type Description
None
Source code in src/typedlogic/solver.py
282
283
284
285
286
287
288
289
290
291
292
def add_predicate_definition(self, predicate_definition: PredicateDefinition) -> None:
    """
    Add a predicate definition to the solver.

    Some solvers do not need predicate definitions (for example, classic prolog systems, as well
    as pure FOL solvers). However, many solvers need some kind of typing information.

    :param predicate_definition:
    :return:
    """
    self.base_theory.predicate_definitions.append(predicate_definition)

dump()

Dump the internal state of the solver as a string.

Returns:

Type Description
str
Source code in src/typedlogic/solver.py
313
314
315
316
317
318
319
def dump(self) -> str:
    """
    Dump the internal state of the solver as a string.

    :return:
    """
    raise NotImplementedError